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ABSTRACT

ai^

"

	

	 The problem of small perturbation potential supersonic flow

around complex configurations is considered. This problem requires

the solution of an integral equation relating the values of the

potential on the surface of the body to the values-of the normal

derivative, which is known from the small perturbation boundary

conditions. The surface of the body is divided into small (hyper-

',#	 boioidal quadrilateral) surface elements, ^^,, which are described

in terms of the Cartesian components of the four corner points.

The values of the potential (and its normal derivative) within

each element is assumed to be constant and equal to its value

at the centroid of the element. This yields a set of linear

;I	 algebraic equations. The coefficients of the equation are givenr

by source and doublet integrals over the surface elements,

Closed form evaluations of the integrals are presented.
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SECTION I

FORMULATION OF THE PROBLEM

1.1 Introduction

A general theory for compressible unsteady potential

aerodynamic flow around lifting bodies having arbitrary shapes

and motions is given in Refs. 1 and 2. Applications to wings

in subsonic flows are given in Refs. 3, 4 and 5. A finite

element formulation for complex configurations in subsonic

flows is given in Ref. 6. Here the formulation is extended

to steady supersonic flows.

The equation of the aerodynamic potential is given by

	

a^ a3?	
s
^ _	

(1.1)

with boundary conditions ( /1 j, is the outwardly directed normal

to the surface of the body, (ri )

17
l^ 

_ _( on 1j')
a Ay

	

"	 (1.2)

The Green function for Eq. (1.1) is . for M > I

G	
_ i	 H (A t- X - 8 	 (z- ZX 	(1.3)

Zn	 r

where H is the Heaviside function and

	

r = j (X- XV) a - V(Wf") X
	

(1.4)

..__..I
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The Green theorem for Eq. (1.1) is (Ref. 1)

E(x••	 txa,y.,z.)	 (( I—M')a5 0
t t as a (P * as	 d a'

fX ax	 al at	 a;z a eL	 ! vs^
d	 H

a	 ax ax	 a^ a^ ait a- 7 17"51
(1.6)

where S1Ps is the gradient in the Physical Space variables

(x,y,z), <r is a suitable surface (see Section 2), defined by

the equation
S(x. y. -a)= C

(1.7)

and the function E is given by

'E s O	 inside a'

E = 1	 outside 6	 (1' 8 )

Introducing the supersonic Prandtl-Glauert nondimensional

variables (-C is a characteristic length of the body)

yields

I dd'	 1	 dx d+	 I dX dY	 I dF-
r Ivf51 - r 'a Ma e I	 R las	 - R 105)	

( l.lo)

where d is the gradient in the Prandtl-Glauert variables, E,

is the surface of the space (X,Y,Z) defined by the equation

S (8x,Y- • Z ) = O	 (1.11)
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and

Combining Eqs . (1 . 6) and (1.10) yields

(1.12)

Ztff.	
•

- -	
l̀

E

a5 21- +
ax

15 a0 t as
aY aY	 39

30
as

N
R

dE
ax Ivsl

a5 a f k 1 t as a r N ^ t 2S y^ N 1^ ^ ^£
l^_77	

l
ax = ax R	 lay 2 Y 	 a^ a 	 R	 i vs^

(1.13)

Note that

N s V, 	 (1.14)
Ivsi

	

is the normal to the deformed surface E 	 In order to use

compact vector notations, it is usual (see, for instance, Ref.

7) to introduce the concept of the conormal

tiJ ` w N * A - 141 - Nz K	 (1.15 )

and the cogradient

j7X A- ^Y 	 - i 73L
	

(1.16)

With this notation, Eq. ;1.13) reduces to

►, _ ( N a ^— ^-^ 	 (1.17)Z7re
l7 a N	 aN R

where the conormal derivative is given by

aN°

Equation (1.16) is in agreement with Eq. (6.89) of Ref. 7,

ORIGINAL PAGE IS
f' tM nnn" nTT A T T V
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where the opposite convention o1 the direction of the normal

is used (here the normal n is directed from the region E = 0

to the region E = 1).

On the other hand, the boundary conditions on-the surface

of the body, Zb , can be written as

vs.' F ra= a S► 8 + e Sr __ L -a $r a \ t U a 5j,j 	 ^	 t	 /
ax	 a^. as a;	 ^ ax(V% 

W( I aSo a^	 aSj, a0 	 A#-- 1	 ( a5►
1 l 6 s Ix ox t 'BY21Y . ) + a Xa^ a^

^Sba0 , aSr a^ + aS► a^ t
Hi

I ,^ i a5► aq ♦ iaSi
Q

	

C ax 5  i aY a^ W j 	 aT ax saX

= O
	

(1.19)

Neglecting terms of the same order of magnitude as those

neglected in linearizing the equation of the aerodynamic

potential yields

aN 
:- pN x;	 on the body	 (1.21)

Finally, note that the linearized Bernoulli theorem for

potential flow yields

CPW 	 (1.22)
x



i	 ^ p

i^

if
i.

ii

^i

^i

S^

w
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or, in Prandtl Glauert variables,

	

"`) s _	 1	 DCr	 ^	 (1.23)
aX

It may be worth noting that the exact boundary conditions

may be rewritten as

	

a K  
g N x^ ^" I M' CPM

	
(1.24)

1.2 Supersonic Vector Algebra
The use of the conormal and the cogradient was found to

be quite cumbersome for the extension of the subsonic finite-

element formulation to supersonic flow. The algebraic mani-

pulations become much simplified if a special vector algebra

is introduced. This algebra is called here, supersonic vector

algebra or super-algebra. The sum, dot product and cross

product are defined in the usual way. In addition, it is

convenient to introduce the supersonic dot product or super-

rr oduct as

a o b = ax br — Qy b y — Q'l, ba	 (1.25)

With this notation,

	

R = (X-xot-q- y") -(Z-^.)'	 (1.26)

where

	

X	 X^

^.	 f



i Q^w =O)
is less than

the vector a

(see Fig. 1)

i in Appendix

if the angle between

(greater than; equal

is pointed inside

Further development

A, where the first

-6-

Similarly

a
aN` — N°7

Furthermore, in addition to the usual norm of a vector

lal	 A.Q

it is convenient to use the supersonic norm or supernorm

AL

Note that

QoA	 O	 Ax	 Q +Q;

(1.28)

(1.29)

(1.30)

(1.31)

that is, Q o Q > O (Q m Q< O

the vector a and the x-axis

to) 45°, which implies that

(outside; on) the Mach cone

of the superalgebra is give]

super-rule

(Q,, b)0 (CrJ) . (QO	 OE)	
(1.32)

and the second super-rule

( a a a)(( b 't )O(bXc)j-(A• by c)
p0E ) ((;=c)o (by a))+ (a 0 1)((E,ca)o(c r A1^

(1.33)
and the third super-rule

PrJewir ER5.1 ' P+ (Ar?ObrC^^Q•9^]^+^a''9ob`C^^Axd'^^= 	 (1.34)

are derived.	 ORIGINAL PAGE IS
OF POOR QUALITY
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'.'	 With this notation, Eq. (1.13) may be rewritten asp'

q ( N0P^ H	
- N0Q"_ H ^) df	 (1.35)^	 o /

1.3 Finite Element Formulation

Assume that the surface % is divided into N small finite

elements 2;, and consider the simplest finite element repre-

	

sentation, that is, assume	 and

(NJD	 =	 N O P^	 (1.36)
s aN`

constant within each element. Equation (1.35) then reduces to

N	 N

271
~ _ d ^;, --	

R 
N• "v H d2A

^ 4s1 
I

H
N	

(N)^S;, 	 p"	 (1.37)

where Si and D i are the source integral

H-- d	 (1.38)
..	 2n ^ a

and the doublet integral

2Tr 	 (1.39)

*Note the analogy with the subsonic Green Theorem
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evaluated on the ith element, Z w .

In Sections 2 and 3, the evaluation of S and D is derived

for a hyperboloidal element (see next subsection). Note that

for a planar element*

D- ~ Z^ Nop 
H dz = -	 Noy	

H 
jf :- No Y.^J	 (1.40)

• — 0	 2 7
f
si	 1

This relation is extremely useful since it is possible to

evaluate D (which in general would involve the use of the

finite part of the integral) as the conormal derivative of S

(which does not contain infinite part).

1.4 Hyperboloidal Element
s

Consider the equations
F

a

or, in vector notations

C	 .. P	 PC « Fol fi 9 * 0112	 (1.42)

This represents a hyperboloid. The lines 9 = const and
const are clearly straight lines. Consider the hyperboloidal

i	 element (Fig. 2) defined by the above equation with

(1.43)

F	 *

.

	

	 Note that D f (P- P.^ = - V 7 l P-P.^ where p is the gradient for

the variables (x,, +^,, 3^



..	 _9_

	The centroid of the element is	 (	 0). The corner.^	 Pc = 7

points of this element are

(1.44)

The inverse relation is

4.(	 P1. + P- -^	 P.

sP 4(p.. -t , - P-)
(1.45)

Note that the four boundaries of the element ( : ±I , =	 )

are straight lines given by

	

=

	 PAGE IS

 

ORIGINAL

fc ' ^r 	 Pj -;^	 OF POOR

	

P =	 P^ - Pi) t	 P^ " P; (1.46)

Next, assume that the surface of the aircraft is divided

into curved quadrilateral elements with four corner points P++,

p+_ , p_+ , p__. Then, as already mentioned, these elements can

be replaced by the hyperboloidal element (described above)
d.	

determined by the four corner points P++ , p+- , p-+ , p-- (see+M

Fig. 2). It may be noted that the surface is continuous since

adjacent elements have in common the straight line connecting

^"	 the two common corner points. It may be noted also that the



4 S

'i
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pC is the centroid of the hyperboloidal element Z 4 and hence

it will be indicated as

c ^
P ^./R 1	 (1.47)

1.5 Surface Geometr y for Hvoerboloidal Elements

Next note that the geometry of the hyperboloidal element

is a particular case of the general equation for a surface in

a three-dimensional Euclidean space, which is given by

P -	 57, 71	 (1.48)

where I and /7 are the generalized curvilinear coordinates.

•T; -Imn the two bf ase vectors Q l 'i' are given by (Fig. 3)

4, = a # _ P, r 7 P,
(1.49)

Qi = =-h - = Pi * J ^3

The unit normal to the surface is given by

n =	 Q. Qj	 (1.50)

and is directed according to the right-hand rule (Fig. 3).

The surface element J2. is given by (Fig. 3)

df=1Q,dI;ajd91 =14,r41d-1d)	 (1.51)

1.6 Expressions for b hk and chk for Hyperboloidal Element

Combining Eqs. (1.10), (1.50) and (1.51) yields

S	 27r
	 (1.5.d)

P
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Similarly, combining Eqs. (1 . 8), (1.13) and (1.14)

yields

t	 a,xa ^ ,^^ 1-1	 ,,^ Y	 (1.53)
2 n	 ^	 !1 ^ Il

k

These expressions are evaluated under the hypothesis

that the surface element is a portion of a hyperboloid,

in Sections 2. and 3, respectively.

1.7 Trapezoidal Planar Element

In order to facilitate the evaluation of the co-

efficients, the integrals are first evaluated for

trapezoidal planar element (the results are then

verified to be valid for a general hyperboloidal

element). The trapezoidal planar element is a particular

use of the hyperboloidal element and is obtained from

this last one by assuming that the two edges

are parallel.t This implies that

P, _ 	 (1.54)

pj	u	 (1.55)

where ^ is the unit vector in the direction ofJ01 , i.e.

(1.56)

Note that this implies that

--	 (1.57)



(1.60)

-12-

Furthermore in order to avoid crossing of the element

boundaries, one must have

^^,' ^ ^	 (1.58)

where the equality sign corresponds to triangular element.

It may be worth noting that

1P/u	 (1.59)

which implies

ORIGINAL PAGE IS

""' POOR QUALITY



SECTION 2

SOURCE ELEMENT

2.1 The Case u o u = 1

Consider the source integral, Eq. (1.38), for a trape-

zoidal planar element (,5 u s e eC i u n 1. 7 ^^

21T5 = 	 df=	 _H_ 1 a , xaa d-

u x P:l (̂
Ila,ll	 H	 d-5d

(2.1)

For simplicity, it is assumed that ^^ =^, j jj^, j%	 is	 P.ACk	 ^kaE

CA a U = (2.2)

The case u a u = -1 is discussed in Subsections 2.4 and 2.5.

Note that

a 4 1fro ^ -t 	I
93	 I ix u o t it to

= -2- (
	 0 iA-	 9A	 X CA 0 1 x U)j

I	 g o Gt,
't Q, m	 t 0

* to u	
u

(2.3)

!	 m u, + If u, II 58—f	 I
=11a^^1

a_	 ô t^ou	 ^	 MAN

Y

e
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Note also that, according to the first superrule, if 
IFTz 

0

(that is, on the Mach cone),

_	 J.
P0, a P Q, = -(;O il) 	 (2.4 )

Hence,

	

to !/ 0 f t ^_
O
 ^^ = X^	 n 0

^.xU a^.	
(2.5)

x(A 

along the portion of the contour on the Mach cone (curves Ml

and M2 in Fig. 4). Thus, no contribution comes from the

portions Mir hence

H	 (H	 +	 (A

TOT

i

 =-I

since H = 0 on the portion N i of the lines 3 = t 1. Hence,

with

S - ig ( ^' w -	 (2.7)

tax

1
.	 ^Qn l ^ t ^. o u

(2.8)

where H = 0 outside the Mach forecone. It may be worth noting

that

(ia WO0u)-4ou) s = ^XL v iYu < O	
(2.9)

For,q x u is pointed outside the Mach cone since q is pointed

inside it. Hence, 1
	

O iA^ and thus,
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for ^. O U	 0 (2.10)

2.2 Indefinite Integration Along

Consider

I	 Ial'at+^®u^ d
1txu^	 7

Integrating by parts yields

(2.11)

I = t7-7^) ^.n 
t -Q j t you

xCA

( -^^,(	 '+ _ ou ( ! ^ 
Q^ 

* QjDU - 2 ----(-2 - xUOAs^tU) d
o	 i	 U	 //	 x I

(2.12)

Noting that

^ ►̂ - ^^ Q1 - g. - ^+	 (2.13)

with

t ^^ *^^^* 7 (p, ♦ P3)	 (2.14)

yields, applying the first super-rule,

J! ^ x u !)



_16-

[if —a! of (iLPSIF	 x !A

l a t o u (;T49 	 ^ 	 u
  p^ x

-	 uoaxu d

p t O1A	 r	 11&xall )

4q - oa	 Iair} !,.,D)t xU®^^ rG d

to^ - qea)" 470—i I *u^l

^. O ^x - /^ u *4N 
d t
	 ro r ^r^N - low- go j. d7

If	 C4 11

t	 11 ^ x (A

^-x ^^o g.xu	 dJ

ORIGINAL PAGE IS
OF PO()R QUALITY	 (2.15)

Next set

^r	 d	 ^(
	

(2.16)

with	 01 "super-orthogonal" to u and a 2 , that is,

^^	
^ N O U = O

..	 0 p, aj, : c	 (2.17)

.w
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This yields

(Q., 7.Z -^. u) o u =0

Q^ / • Aj -	 U 0 Q 1 : 0	 (2.18)

or
$- T (,IOU - 7r AsOU = Q U O U

a^T u 6 Qj 7 Qa a Qs = Q• O Qa	 (2.19)

which is a system of two equations with two unknowns, with

solution

	

QsOQ,-Q.OQs ajoU _ A^xQ,Oax	 _ ^xQsOUxQi

	

u o u p,oQ,- uoA,a,ou	 a =Qi0iA

_ Q, o u u oAj - Q. eQ: uou _ _ Q. =U o d,s u

	

C CA As+ Q3 0 iA- 0u	 U=A,OUxQ,

(2.20)

Note that

_,70 _ (7a,-(-ao]IaC;a,.a - }^u ma,^u

	

IA x is 0 u =	 - (^ U Qs ^^'	
(2.21)

Combining Eqs. (2.15) and (2.16) yields

_	 P =^/rN ♦ u)O	 a	 d'7

it
_ _	 a



-1s-

tot ^"'ou - -you }s} dq	 T	 I	 d
1	 x U 4—V i x	 A

- +	 ^	 ^' ° u	 d '1	 T	 ^	 d

(2.22)

since (see Eq. C.4)

^

	

	 wwi u J - ^} o ^* (2.23)

As shown in Appendix B, by integrating Eq. (2.22), one obtains

(Eqs. B . 14, B.15, B.16 and B.29)

f	 Q

	

I' a *T F (9^ - 
I r N O gw "  	 -flag f ,

where
	 ^,,	 9

^ 1 ^^ =	 I	 ^1) I Tf	 Qa^ Qa + D^ o asI

lift

t

	

li,, o li+ 	^) ^, X A, ^)

•-

^^	 1	 s -, boa-.	 se ^ ---- i n
r-

(2.24)

as ai O

pz 6 a,, =6 o

04	 < 0
(2.25)
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On the other hand, as shown in Appendix C

_	 s

M	 N	 I ^ _ QI ^ a3I (2.26)O	 =

Hence, combining Eqs. (2.11) , (2.15) , (2 . 20) , (2.21) , ( 2.24) ,

and (2.25) yields

^POO

t p T F (I I

^	 N

	

g'a , x a•l	 p^.11 i •a^Xit)

	

O	 07 + ^vu.. __ ( r U v Q, s uJ ^n

	

—M U Raj a '	 lit  all

+ . r ax o LI x As F (9)

P 1	 ux d	
(2.27)

where the principal value, t4-41,  , of the function x	 ,

is defined as

(2.27a)

	

- 1 ^	 _P Cx) ^ z2

,f



h^
r^
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2.3 Source Integral

Combining Eqs. (2.8) and (2 . 9) yields

As(-S) s I 16 (-J, 1) — I f (fj ,-^,	 (2.28)

where, (note that I u x F. ( =13"1 4411 AaJ) if H = 1(that is if
the corner point is inside the Mach forecone)

I s ^^, 7) = i-=

x q x lf^ o Al x Ql)	 Y-4	 _
W j. • Q, II

t ^X ajo a,^Q.) F 7)

( 
-rxa0fx4• ) 

I
k&'Qr xQi

ORIGINAL PAGE IS
OF POOR Q UALn y

(2.29)

with F( 	 given by Eq. ( 2-25).
On the other hand, if H - 0, this means that the corner

point is outside the Mach cone and there are two possibilities:

the whole segment -1 S 7 t I is outside the Mach forecone or a
f

portion of the segment is inside it. In the first case, i(-000

1	 and hence it is legitimate to set
.. 

	 O
f	

In the second case, the integration must be restricted to the

portion of the segment with H - 1. Hence, the value of I S must
i

t^
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be evaluated at this extreme of integration, which corresponds

to the point where 4 e q = 0. As mentioned above, for $ o q- = 0,

the first logarithmic term is equal to zero. In the second

term, F(1) assumes the value

^ Qsa	

AL Tr	 0	 0
 

(2.30)

It may be noted that for q pq = 0

where Nc is the inward unit normal 	 ^` ^ to the Mach

forecone (see Fig. 5). Hence, noting that 5, is in any case

directed from _ -1 to ? = 1, it turns out that

r v Q,, 	 > O	 ( 2.31)

if a2 is directed inside the Mach cone, i.e., for lower extreme
of integration and viceversa; hence,

Qs	_pl*l (Y) 2 _7 	 (2.32)

with 7- -1?_ ^^ for the lower (upper) limit of integration.

Finally, the last term assumes the value

_.1 P ill Ad s '&rHfRIofrJd)	 (2.33)

However, according to the first super-rule for q'0 q" - 0,

1 i, 1 4	 i d' f	 (2.34)
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On the other hand

^o Ll	 0	
(2.35)

if al is directed inside the Mach cone (and viceversa). This

is true if the x-component of ur u x , is negative (positi•re)

(Fig. 5 ) since VI o U > o by assumption. Hence,

Sijn ( ^OA1) : — fit," (fix	 (2.36)

Finally, combining Eqs. (2 . 30) through (2.36), one obtains,

for the case in which portion of the segment is inside the

Mach forecone, but the corner is outside it,

I s t , ^^ — 
^ a, = ail ,	 g, x a, o a, v a. F. (2)

z
(2.37a)

where
F. (7) a 0
	 a,o 4, 20

_	 1	 T1	
Q1 O Q3 -C 0

II A, a 2 ^
In summary, according to Eq. (2.7)

where, according to Eq. (2.28)

.

(2.37b)

(2.38a)

(2.38b)

In Eq. (2.38b)

I, (1	 (2.39)



C7 1 -	 I	 ^ ^^^^I ^ u1^I f' ^OQ3

N al a	 ^	 M ^, ^ Q} 11
r Q 1 O Q, > 0

q	 II

a. 0 Qj = v

ORIGINAL PAGE M
OP POOR QUALITY

53  0 Z c 0

{

(2.41)

r

I

P

r•

e
E'

:. yv

II Q: p >^n	 ^ - ,^ Ai

}y

t
k	 `^
fC6 + .

F
{	 {

^	 1i,
t

`t

I

"r
wi

P ..

r

r^

ti
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if the segment —1 - 7 I is completely outside the Mac;t cone.

On the other hand, if a portion of the segment is inside the

Mach cone, then two cases are possible: a) the corner = t

is inside the Mach forecone (H = 1) or, b) the corner 	 ; t I

is not inside the Mach forecone (H = 0). In the first case

4 m q > 0 and according to Eq. ( 2.29),

II a, x ^= it `	

x 

Ll	 s	 ' u a,	 - X a, JII^

tx dx a i^, -v 5j F(2)

-I - fx Q. ogrfQl
P	

N 
g 
Jl f'i'x 4'8

(2.40)

with (see Eq. 2.25)

I



-24-

On the other hand, in the second case, which corresponds to

q eq tO, according to Eq. (2.37a)

	

I S 	 q) -	 Q' %
 Zia,

s	 ^ , al  ° 4, = a= ^. l ^^
- A A, At II

... I. Q x Q=!1	 r, U Y^
Z

(2.42)

where

I	
n	 A= o as 0

11 6, 11 	 2	 (2.43)

2.4 Planar Quadrilateral Element Internal to Mach Cone

In this Subsection, it is shown how the results obtained

thus far can be extended to quadrilateral planar elements. In

order to do this it will be shown that the second mixed de-

rivative of the function

^s ^^' ^^ — Qf x Q`	
^ 1f Q, 0 Qa X QI 1 1 ^i ^^

+ J 
x Qs o a, J( 	 F,

O ^zQ,

(2.44)
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is proportional to the integrand of the source integral.

In Eq. (2.44),

Fj(T9) -	 1	 In of IIQ,II

 ila,+I	 n^AQ,II

0	
a

8a,ll	 ^-^a,^`

Q,o	 >0

a, 0 , _ 0

q, 0 4, < o

..
F.

II Qi 11	 If ^. ^ a"^. Il
	 Q, O Q. 7 0

^. o al
	 a, o a, = o

II a, ^► 	 ^ ^ ^ Q, !1

	 < o

(2.46)
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Note that Eqs. (2.44) (2.45) and (2.46) reduce to the formu-

lation derived in the preceeding Subsection., if a l a al > 0.

Equation (2.44) may be rewritten'as

is
- qa,

1C	 x al

{a,1^	 14,xQ•1

t ^, x a, o	
Q, X Q^	 Fi ^^, ^^

	

Gin	 _

la, ^ Q,I	 P 1111 ^•Q,x Q=

 -
= 
	

-;, q,on F,(-T,7) ^ Y x 4 o n F
-II n II	

^ (1,2)
'

(2.47)

since	 p =	 Q' " Qi

I v, ^ a= I
(2.48)

^r

7•
i
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Next consider the second mixed derivative of Eq. (2.47).

Note that

a	
= at

a^

a Q,	 a 4^

8 T	 _ Q	 (2.49)
a^	

L

(2.50)

and

a a,	 a 4,	 -	 (2.51)
a 9	 a-1

Note also that, for a planar element, the unit normal n is

independent of and

a n	 a n 	 (2.52)-^	 = a7 = 0

Hence

41 en) E U
	

(2.53)

and

a x4jo	 Ohl = (a,xQ,o n ^
Vn
	 ^-	 (2.54 )

Furthermore, as shown in Appendix B (see Eq. B.5, 8.10 and B.12)

a	 1 i, ^ Q' o a, ♦ o o,	 —
!I as it	 ^^	 x as i^	 u: o Q, > o

2	 N O —	 (Q	 Gjj - Di



O As

a ^	 II as it	 p ^ x a,1J
ash ps <0,'

or

(^Vv aa. o Q. < O ) (2.56)a Fz =
	

^

a 	̂ II ^. ►1

-28-

go ^

(2.55)

Similarly, interchanging indices

aF 	 ^	 -_ _	 (-For Q, o Q, ^ 0 (2.57)

Hence

a%	 ^4Q,o n F. 1 ,^>

(x a, on	 _1

(2.58)

40
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and similarly, interchanging indices

s

09	 q

Qr=4,0n- 	P;on _ _ _ _	 o q=
t	

;
	

(

	

R o n	 _o
IJ	 n ^.11	 ^ 

(2.59)

Finally, as shown in Appendix D,

0

01 a7	 P	 ll^ d	 •q,x a,

(2.60)

Finally, combining Eas. (2.47), (2.58), (2.59) and (2.60)

yields (note that	 )

'D + S
a^ a^
	 nvn

QXQ► on	 x P,an
—	 ^^^	 ^	

urn	
- gar o ^	 ^^^,

G;x4s on	 $ X P3 0n	 -	 oQr
t	 -1	 *	 –	 on—^--;

	

l^l	 ^^A	 /loll
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{
lŶ 	 M i II'

4	 2 ^Q,xQ,f noǹ  --- *
fi o n	 tl p

(2.61)

On the other hand, according to Eq. (A.16),

— ^q^xQ1 J ^^xQ^oil ax 	 ^oQ,- ;-A

x Q, O Qy x Q^ ^. O Qs + 	 Qy O Qr t Qs	 O Qt * l	 Q^ a Qj

O Q, x Qa

^o ^ non 'Q,x^, I 1
(2.62)

Hence

2 	 ^q,yQ,^non	 ^0	 (2.63)
Of 	 non	 11a	 non ll^llf

or

'D 1 s	 (Q, " Q,	
(2.64)
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Hence, according to Eq. (2.1), the source integral is given

j	 by (note that for elements internal to the Mach cone, H = 1)

I	 I

2TrS =	 J1d2 s
rl II	 II	 -1 _, a	 a^	

(2.65)

or

	

21t5 = Is ( 1 , 1) -	 - I s (- 1, 1) - Is (- ',
- '>

(2.66)

with IS given by Eq. (2.44).

2.5 General Quadrilateral Planar Element

In order to extend the results to a planar quadrilateral

element intersected by the reach forecone, it is convenient to

use the theory of distribution by Schwartz (;2 e s re n c e 8},

: For, note that, according to Eqs. (2.61) and (2.64)

la__'=̂I _ 1 x _	 on _ "y Pi on 	 a
D Y	 nvn	 t	 {I 11	 p- II	 X '^n 0t

+	 QTR Qs0/1 — y r Pj 0 n-

	

- g. Qj•	 1p ^,ll	 ^ ,r w Q - II^J

	

(	 B^QiXQi

a l ^' n	 M r

(2.67)
But while the left-hand side has an integrable singularity, each

one of the three terms in brackets on the right-hand side is

nonintegrable within the framework of the theory of real func-

tion. However, if the right-hand side is treated as generalized

^i
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function (or distribution), then the integral of the right-
es

hand side (in the sense of the theory of distributions) equals

-=	 the desired integral of the left-hand side (in the sense of the

theory of real functions).

•

	

	 It is obvious that if the element is fully within the Mach

forecone, then the results described here reduce . to the one

given in the preceding subsection. Also, if the element is

completely outside the Mach forecone, the value of the integral

is zero. Therefore, the results presented here complete the

formulation for a general quadrilateral planar element.

In order to simplify the derivation of the results, consider

each of the three terms in the brackets in Eq. (2.67) independently.

This yields, according to Eq. (2.1)

2715 = 	 H^ "q,{ as l ^^^? _ ( 5, * S.	 (2.68)

11^
where, according to Eq. (2.67)

11

hon	 1111	 i	 Aq	 (2.69)

I 

3	 ^J = 	 Pf	 n` o l Q'	 . '^	 Y ^l^ n - '^Q'°	 Ql	 d	
(2.7 0 )

^	 1I p	 it	 d^^

1	 1

(2.71)
nSS - Pf n	 ^• n	 Q' Q' ^^^

..
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where Q{ indicates the finite part (partie finie de Hadamard),

of the integral in agreement with the theory of distributions

"	 (Ref. 7, p. 38-43). Note in particular that (Ref. 7, Eq. II,

2; 26 with m = - 3/2 and T = 0 for x >a)

P'f	 x _ i	 ^x) d x	 1i^ 1 (	 x- 	 (A)	 * 	 _	 1	 (2.7 2 )
-vo

t 	 Hence, one obtains for !!0 = 'x p _ s Q
^	 /	 d

Q	 4

T
i

P f a- ^ I x^̂ d x ^ P{ ^ X 3,, ) 
^ x

. 	x

4	 / I	 x ,i

(a)

(2.73)

In other words, the singular contribution disappears and should

not be taken into account. It may be worth noting that the use

of the distribution theory, in particular the finite part of

the integrals, is fully legitimate, because the sum of the three

integrals considered in the following is a regular integral.

Hence, the three singular contributions (which are not taken

.,	 into account in the theory of distribution) would cancel each

r

i

E
t

r	 .
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other in the theory of regular function, if the integral is

evaluated in the limit (starting from a region of integration

without singularity in it and letting the region approach the

one under consideration here). The use of theory of distribution

however is preferable since it yields the same results with much

less complication.

Hence, in order to evaluate S, consider first S l . Integrating

with respect to	 over the portion of the element with H = 1

(Mach precone) one obtains ( see Eq. 2.58)

I	 i

o
^ 

p^ 
d.^ ) ^^a1 r4,on tgx P^oh^^og- ^.rG,oh ^.oQ,,^ 

>I^n3 ^/
^j 

_— -, - p̂  ^^,J H ^ (- ^q,on _' _ dry
i o n	 a `^	 o

- — --- ( s D, on
9s d

non l	 A HP

(2.74)

where, according to Eq. (2.73),

H z 4	 outside the Mach forecone
a I	 inside the Mach forecone 	 (2.75)

In other words, the portions along the intersection of the element

with the Mach forecone ( lines M  in Fig. 3) yield no contribu-

tions to the integral in agreement with Eq. (2.73). It may be

worth noting that

I1^ui = X C7- 7.)1
	

(2.76)
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where 7. is the value of

suitable constant. This

Eq. (2.74).

In order to discuss

venient to rewrite Eq.

C	 c .
t^ I	 a r^

with

n for which M Y 0, and	 is a

justifies the use of Eq. (2.73) in

the integration along "^ , it is con-

2.74) as

51-	
(2.77)

I

Sr * _ -	 r c Q^on 
H (	 G^	 (2.78)n o n C^^	 ^ p u ^ :,.,

_	 I
(2.79)

on	
1 

-^n	 p ^I J 7=

Next, consider the two following possibilities. First

He (I) 1	 = 0	 -1 tj is 1	 (2.80)

is completely outside the Mach forecone. In this case,

S
.^	 O	 (2.81)

In the second case, introduce the abscissas - and -^ such

that	 +

0	 -	 _< 1	 (2.82)

In particular, '^ ^ _^ 	 ^' : ' if the corner f- -I, 2-
is inside the Mach forecone. Using Eq. (2.82), Eq. (2.78) may

be written as (see also Eq. 2.53).
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1
r

r	 = -^	 ^.xG,On,	 d	 (2.83)

y '	 or, according to Eq. (2,58)

F, ,^,7)^	 (2.84)

where

C	 Q ,	 C '	 (2.85)
IS' (^, t ^ = — non ^.^ron^ ^^, 3 ,

7=

ISM 1 ^' ^ " 
a	 non l D" x Q, v n l,= i !-"r 	 +, ^)

	 (2.86)

Note that if 'VA 1 (i.e., if the corner(1,1) is inside the Mach

forecone), then l is the value of I at which H. becomes equal
to zero, i.e., the edge	 crosses the surface of the Mach

..	 forecone. Hence

i1. II =o	 or s`' , 
7

=^	 (2.87)

This implies, according to the first superrule, 	 0Q1

and therefore, according to Eq. (2.45)	 0

rr (( + JJ _ o

'	 Here, it is assumed that Y n l - 0, that is the centroid of

any element is not contained in the line 	 .o )



Similarly

q?a 4 1 '0

8=
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I	 TT	
(2.89)

;i — e= -Tap 
2 

Sin 4,)	 pr o q^<O

if 	 _ -	 In order to obtain the expression for sign

(q a al ) the same reasoning used in deriving Eq. 	 (2.32) may be

employed.	 For, note that, if q O q 	 -	 0, the vector q is tangent

to the Mach forecone (Figs. 1 and 5). 	 Therefore q 	 (see Eq. A.5)

E is directed like the inward normal to the surface of the Mach

' t forecone at P.	 Hence

..`
O	 Q^ =	 • or	 O	 (2.90)

is inwardly directed and vice versa. 	 Note that the case q o a i = 0

implies that a1 is not tangent to the Mach forecone (see Fig. 1).

i On the other-hand, a 	 is necessarily directed from 	 _ -1 to1
+1 since along	 = 1

A► 	 PS	 = 2 ^^..-	 *•)	 (2.91)

E	
`	 , Therefore	 if+,	 ^	 a1 is inwardly directed at	 "^ 	 (lower

f limit of integration, see Fig. 6), while, if	 ^'a '	 -1	 7j1 is

:. outwardly directed at '1. (upper limit of integration). 	 In other

` words

et

(2.92)

Similar results may be obtained for S1. 	 In summary, it is

_• possible to rewrite the results in a more compact form, as follows:

ORIGINAL PAGE I8
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(2.93)
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where

15' (9, 1) _ I s, (- I, 1 ) = o	
(2.94)

or	
IS (', - 1, - ISM C'i,'"^) _	 (2.95)

if the edge	 1, or J = -1, respectively, is completely

outside the Mach forecone. Otherwise

	

non- s,	 )(2.96)

if the corner I = S1, 7 = S 2 is inside the Mach forecone, while

(see Eqs. 2.88, 2.89, and 2.92)

Ise (s, . S.) _	 a o Q, ? o

(2.97)

if the corner is outside the Mach forecone, i.e., if

1 
0 

i 4-- :58' 9- S. < 0

	
(2.98)

In writing Eq. (2.97), Eq. (2.92) has been modified to read

s; r ( X0 Q,) = 1. 1	 4ov- S, = -I

z	 •_1 	 01-	 S,_+I	
(2.99)

Next, consider the second contribution, S 2 , to the source

integral. This is given by Eq. (2.70). Interchanging the order

of integration and repeating the procedure used for S 1 , one

obtains (see Eq. 2.59) 1

s _ 1	 d	 j(4rQOn+ X/'aon^^.o^- Q on ioz']
non

non	 / j71-

	

t	 p 	 /

non 	 A +1 -^: -i
(2.loo)

J.
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where
H0 = 0	 outside the Mach forecone

= 1	 inside the Mach forecone

(2.101)

or

(2.102)
s

Hence, Eq. (2.100) may be rewritten as

^+	 (2.103)
Si, _- J 1 ^ S3 -

where

^^	 nO17	 ^, Q

i
O n + 99
	

d^ _+^	 (2.104)

Note that

0	 (2.105)

if H0 = 0 along the edge = t 1, i.e., if the edge _ ± 1 is

completely outside the Mach forecone. Otherwise, (see Eq. 2.59)

^
C +

^	 = 
i 

sr ^± J ,	 - is ^t J , - I,	 (2'.106 )
r

where

S	
^ t

non

(2.107)
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.	 Note that if ?s 	1 (or ^^ ±	 * -1) ,

...	
_ qq x Q Oh	 1 Sin (	 O	 ,<o(2.108)

#
where

f
:.. = - S',	 t	 I	 (2.109)

i	 In summary, it is possible to rewrite the results in -a more compact

4	 form as follows

;^ = 1s (+, I) - 15'. (1,-,) 	 IS^ (-+, i)^	 i (_I,-+)	 (2.110)

where

or	 (2.111)

if the edge	 = 1 or	 _ -1, respectively, is completely outside

the Mach forecone. Otherwise,

1 
Si <,^►  57j 	 ^S`, t f	

(2.112)
/	 fie	 q'-:S1J %.z I

if the corner = Sl , 9 = S2 is inside the Mach forecone, while

	

Isi (S,, S,) = 0	 Quo Q^ > 0

	

_ -I	 —	 1	 n1
7F OA TzQ► °nl =s IIQ,q 2 Si 	 Qs04, 

O (2.113)

if the corner is outside the Mach forecone.
r

^

	

	 Next consider the last contribution, S 3 , to the source inte-

gral. This is given by Eq. (2.70). Note that for planar elements
..	

r

	

• h	 C.onst	 (2.114)



t
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i
i.	 Therefore

--^-- 2 71 D	 (2.115)n'on
with D as the doublet integral given by Eq. (3.28). The evaluation

of D is discussed in Subsection 3.4 under the less restrictive

hypothesis of hyperboloidal (nonnecessarily planar) element. The

results obtained there are applicable here and this, according to

Eq. (3.39)

:53 _ _ ^" ( z, ^^,— _^ f^,—io (—^, ion—i,—)
-	 ; pn	 (2.116)

where ID (Sl , S2 ) is given by Eqs. (3.40) to (3.43).

In conclusion 	 '^;^	 combining Eqs. (2.68) , (2.93) , (2.110) ,

and (2.116), one obtains

2 7r5 - If (1. 0- IS (1,- ► )- IS (-1, Il T I S (- ^,-' ^	 (^. ^^...

with

T S (^', ^i^	 ls, (s1 Sa l t ls^ (S,Si>^	 jC ^^t, 5L ) rG ,
„(,	 n o n

where Ise (5,,5.)is given by Eqs. (2.94) , to (2.97) , 	 IS`(s,,s.^is

given by Eqs. (2.111) to (2.113) and 	 ,ID (51, 5.) is given by Eqs.

(3.40) to (3.43) .

;r
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SECTION 3

DOUBLET ELEMENT

3.1 Introduction

Consider the doubletintegral, Eq. (1.39)

Y=—LOv^ H_1 dE 	(3.1)

As mentioned in Section 1, in order to avoid evaluation of

finite parts of integrals, it is convenient to use Eq. (1.40)

1)=--L N o V 1-1 dF =- N o p.,^	 (3.2)

Hence, according to Eq. (2.3^)

=+-L I ti a ^^^	 '(-D^'^^	 (3.3)

with

tip (^) = + N o v. 	
(3.4)

or, according to Eq. (2.38)

i (I ) ° Io (I I ) - I v (1,-1)	
(3.5)

where

I D (-5, 7) = + 	 7)	 (3.6)

with Is given by Eqs. (2.40) to ( 2.43).
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3.2 Evaluation of ID

Consider first Eq. (2.40). In order to evaluate ID , it

is convenient to use the definition of the unit normal N

i -	 :' _	 QI X A3N -	 (3.7)
Q, x G^,)

and recast Eq. (2.40) as

°	 - K Q 
o N
	 1 

Qn 
p 11 q^^ll	 Ga,

2	 I ^^ 7^ = -	 ^-	 ,	 -E	 s 	 NO N t	 ^d^11	 ^ ^ x A^ ^

R

t.xal.^ ^'c7)
t
A:

`. ^	 P	 ^ ^ II ^, • u^ x Q,

(3.8)

Note that P O appears only in q = P - P 0 , (Eq. 1.27). Hence

(PN o v,)d^ : o

(til o V.	 °
t

(N o6.)N

	

.;	 (N o.)	 : -^Nz ^ Ny—'-N^ ^ ^ y.	 -Ny	 n/`

	

^.	 -4/s	
(3.9)

	

.d	 where Nc is the conormal, Eq. (1.15). Note that N is orthogonal

to al and E2 (Eq. 3.7) . Thus

C
(3.10)

	

^..	 N v Ai _ N •Q,^ o
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:.'	 Thus

t^J 0 D,	 A, o N^ = - /V ` x Q o N	 - N `x Q, o Q' x a`
1 Q + x ^^!

Q,oa,]^^ax^,^ ^0

Nov,( 'Va0o )_-N` ^ Q,mil
Q, z aj

( 1J ` o a, QI S ga - A/` o Qi Q, o a, l I G, X Q, _ 0

(3.11)

and

	

n! o V. l ^ • k i = - '^/ `• N _ - T4 o N	 (3.12)

On the other hand, for a 1 O al > 0,

Nov,	
^	

^.n	
^. v g Q, o ^, t o o a,(	

-	
l

All N	 `	 JI! ^- x a JI

i	
N ^ p, Qn ^/r ^-" g' ar v Q, ,^ ^ O ^t,) - i ^n ^ ^ x Q, m x Q,)

lik FG-I F4 I 8—j + i f N Ot	 1 -j,xa,vf,cQ, i

!(,o Q, - o Q, t-^l ò ^}	 No^ Q ► oA, - Al` oQ, a+ A,

r.t
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s	
N^ o Q, 1	 ^

^	 - II xa,ll	 - o -

(3.13)

Furthermore, by setting

S„ = Si In (f. 0 	 (3.14)

one obtains

N o p. U_' 

( 11111 +lilx

- 8 Jt 111	 D' x Qa

4
5'	 x

'	 m	 •Q,xQj^^

t-!)=	
^/v`xq^0 ^^Ri ♦ 

^ xQ ► ® ^ Nara'

^Vlp f aSw ^.• Q, x al^

r	 -N ` v ^.	 S	 a, gal

(t o P 1	 44 '^^;a,^ 	 -a 0Q,x

Si N_^- a j 1 ^^ Q, a Q^,
w	 x
 tx	 x J^J'	 f oW -A
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X 	 ^
a

N xQ I ® ^X Qa+ $.x Q t O N^'aQ^, ^.^^, ^.•Q, sQj

^' atita., * °^ N 'aixa^J

A444*AL PAGE 3
OF POOR QUALITY

(3.15)

In order to obtain a simpler expression, note that according

to the first and second super-rules and Eq. (3.10),

+ 
	

q -at "as

oN Cc 	 .Q,xaj* o ^°.a,KQj,(^,xat0^^aj,

C ^ ^ gr ^, O Q^ - /1I ° O Q,^ A , O ^ r ^ O ^ ^ Q, O Q,, - ^, O ai ^, O ^c•,

X	 aj

_	 I

+	 0 ^^ $r •a1 r as^r	 B,. N^' 4trQj)

l
.^ l^OQr $.^Q^ ^ • N ^• tt,^Q, ♦ 	 11/ `. Q t x. Qj

^. • N ^ ' Qt x Q: C ^O '^ A, o As •r ^. O a, ^ O as

^ 
^ Q I n f^;, ^ ^ , Q, 

n Qy, L $-0 ^ l^, 0 Qi '* ^.!7 Qt ^.O Q^/j/

O (Q,t Ai	 x Qj	 ^ gl m Qx	 O4, OQj^
lo,^a:l
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^' Q ! d, s Q, O Q, t Q, 	 O ^. Q, O Q, t j a 4,

jok(q,od, j04,- ^,04, q,oa,^(fm 4,ma, joz poQ,)
if
..	 _ ^va,(Q,oa, boa,- boa, Q,oQ^^^o^a^O4,,.^oa,^roa^

OQi-

•	 =	 s ^O ^ tR, O Q, Qj0 4, - ^Qi ®Qj^ ^ ^ 0 4, 3.0 Qi *

(gea+^ a,oa, ^ot4,oa, -,o a,)a,oa, 10A, t boa, $oa,p^

'do i)"Ia i")^a, mas -goaI)q,ao, TOlii,aa, - r;oa QiQQs &vqj

♦ .0 AA j. Qa2 -o g• (Q, oa1) t (to Ql) (^vQ,) 4► oQj

.= -^
, 1 a

t ^.o.i,^(.oa, itsoQ,_oa, q,oa,^(goj a^o as- (foa,)^

— "----f j.OG,^^.xQ^OQ,rQ► 1( ^ x aiOgr"as/ t ^^ ai^g X Qi O QiX Al)^f ^Qi0^x4r^^

`,	 ^ ^^,rQ,ON)^^-4Q,,M^rG,M - (^,x QjON^I^'^ Q^K^,r Q, 1a
(3.16)

Furthermore, as shown in Appendix C (Eq. C.14)

0 3 ^ ^' Q^ r Q, ^ * (^.+t Q, O ^, r Q,) ^ _ ^ g, s Q, p, ^ ^. x Qi 
r:

(3.17)

Hence, combining Eqs. (3.15), (3.16) and (3.17), yields

s;

Ir



_ 5„®Q^g ----- — I X Z® N
it

(3.18)
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^F

Next, it is shown that for any value of a 2 p a2

(3.19)

- 0 ^ X

where F is given by Eq. (2.41). For, if a2 p a2 > 0, repeating

the same derivation as shown in Eq. (3.13),

V. F	
Al . 1 5, oT , 1 v^,)

^	 lg xa^ll

g o a,	 1
N -ll x ^^ N'	 o

r (3.20)

Similarly, if a 2 p a2 = 0, then - (Jaifi)" = jxasm 
$ X 

J, = _^^ ,^ ^i Ni

and 	 o
IV O V. F =Nov.

OQj

;VOT t 	 1	
0

(3.21)
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Finally, if a2 p a 2 L 0

a

	

Nas q	 q ^,xa,^

N 0' x Qs N

:= I
	 N g R al A	

_ = (N `^ ^. aj m a, - N `o q, ^.o a, ))
lisA - x^O xQ, -(jd4 )j

	
N -: a, q

E^

r	 — ajo as ^, o ^	 I g ^ a,, N'

g. mos 	 ^

A -

(3.22)

Finally, combining Eqs. (3.8), (3.11), ( 3.12), (3.13), (3.18),

and (3.19) yields

ID= O 4. Is	 (^.^ a,oN^ o P	 Q^	 o a l
NON	 naa	 Ix Q,a

-^ -fla,o.a,
Y	 Y ^^.xa,,o N^ hl^ O.F— S„(^.•N^NoPtan	-	 -

,^ (li t  l p'fIA 4I
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NoN	 UP dLl'

x A= o ^ (^,. N1 
^ o ate

=

—` ^	 N -X ^M	 n x a il`

tan + 
-^Y4,o xv,

(IIn^a•^,Xa11

f	
^ f Q, 

0 q y A2

iO=X=t
"CanP 	 ^	 s (3.23)

3.3 Direct Integration (for elements completely inside the

Mach cone)

3.3 Quadrilateral Element Internal to Mach Cone

Consider Eq. (3.1) for elements internal to the Mach forecone.

In this case, H 9 1 and Eq. (3.1) reduces to

U =	 v	 oN d^..	 ^n	 1 tl	 II
^ 1 _^



{^	 2n	 11 -q 1)3	 Q^ Qy

(3.24)

since P	 Consider the function

ID ^^, /1 = Q^ P 	 (3.25)oil/ ^•afx4^.

As shown in Appendix D (sea Eq. D.17)
r

^' X as	 (3.26)
^^ ^'J	 q 9 II;

Therefore, combining Eqs. (3.24) and (3.26), one obtains

r	 I

— ZTrV _	 a So d d7

Ip ^1, l^ - I, (-!. !^" j^^l.'^) t jp (—f ,-l)	 (3.27)

3.4 General Quadrilateral Element

In order to extend the above results to elements partially

inside the Mach forecone, it is necessary to use the methods of

theory of distributions, which were introduced in Section 2. For,

the conormal derivative of 
n 

is not integrable in the theory
a

of regular functions. The interpretation of this fact is given

ORIGINAL PAGE I3
01' POOR QUALITY
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in Ref. 1, Appendix H, where the doublet integral is obtained

I	 in the limit (by replacing II with a suitable continuous func-

tion and then taking the limit as the continuous function approaches

the original function).

In the case of a planar element, the problem can be circum-

vented in the way used in Subsection 3.2, that is., by replacing

the integral of the r ,rmal derivative with the normal derivative

of the integral. On the other hand, in the case of general

hyperboloidal quadrilateral element, it is still possible to

evaluate the integral, however only by using the methods of the

theory of distributions. Consider therefore, Eq. (3.1) which

for an element inside the Mach forecone, may be written as

(see Eq. 3.24)

	

^	 1

2 7T D s S S N o p ^ 
H

ii ^ d^

I	 I

H ^o p 1 d^

	

P	 (T,
1	 -, al x 

a2

(3.28)

Using Eq. (D.17), one obtains

-1TTD _	 _ ^	 1 N• ^ fi^	 ^.Qf xP3 	 p pi ^. .Q^x ps^ d^ (3.29)
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'	 where H 0 , defined by Eq. (2.75), is used in order to take into

r	 account the fact that the contributions of the intersection -̂-f

	

=•	 the element with the surface of the Mach forecone is equal to

ri g 	zero (in agreement with Eq. 2.73). This is the same procedure
I	

used in Eq. (2.74).f

Next, introduca the abscissas 9,	 and 7,

such that

Hv

?j
O	 r^ ; _	 (3.30)

a

	

t	 Note that nyt _ t	 if the point (1,1l is inside the Mach forecone.
a

Similar possibilities hold for 7s r^`, r^^' . Using Eq. (3.30) ,

Eq. (3.29) may be rewritten as

- Z TT 1) =	 i'	 Q ^^ ^) II ^ .	 a-' Qr Y ^3	
0 Q,	 - ' Q, X Qs>

- l -	 -_- (^-° ^ ^•a,xPi - ^.oQ, ^.4,^ 4,)	 d ry

(3.31)
or, by using Eq. (D.15) 	 r^

+	 /i

— Z Tf D 
_ J ^' a ID	 —	 a I,

_e
,a	 7 ^	 d

* I, r t, `f;1	 (3.32)

It should be empha^ized that if }-^^ (± 1, ^) ^ o',then ^i-' _ ^^; and thus

Ip 0 1, 7i ±/ " Ir (+ 1 " II I ) B 0	 (3.33)

F ..
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Note that, if -£y' .r. o . , then 1 II .- O and hence, +il o ^sQ= 104, jo os

and therefore
t^

•	 ID { 1 , 7^'^ = sib	 °Q► ° a,

`	 = S1^n (^O ^i^ Si^+ ^^,0 A=^ Suit (• 4, c7^ (3.34)

with sign (	 O aj ) given by Eq. (2.109) . In order to find

the values of the other terms, note that, for = 1, 7^' and 
r^^

are the roots of

1	 1-	 O(P,r l^^'^3^^Po''^^O^^s;P^>t^^P^tP3^OCP:*Ps ' O (3.35)

and thus, at = 1 and	 ri*

^UQI =C^PotP^1-^-I>1^^p,t^3)
/

^	 gyp, +Jj,^;^	 (3.36)
while	

11^^ 

r	 r(*	 1 /+ Pi)* ^i ^Ps ' P3>J' i Pi*^3,X 	 ®s ,	 (3.37)

Finally, it may be noted that 10,W = ^^• Q, = O (or,
_^	 0

• 4, = d ) at	 implies that al ( a2 respectively) is tangent

to the surface of the Mach forecone. Hence, one can conclude that

1 OZ = 0 and P q, = 0 cannot occur simultaneously, otherwise

the element is tangent to the Mach forecone, contrary to the

hypothesis of small perturbation. Therefore, if 	 at = 0,

the configuration is as shown in Fig. 6 and it is evident that

a more convenient way to evaluate D is by interchanging the

order of integration, which yields

-•27TD = ly C' î+  ^^- jD 1,i^ ^^-ID'3j`^^''1,1/^-^/	 (3.38)
r

wr
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^r

F

6

r,

Obviously Eq. (3.38) is equivalent to Eq. ( 3.32).

In summary, it is possible to rewrite the results in a

more compact form, as follows,

-^^ry = iD {^.	 _TV (i,-,)-i,(-^.^)^ Sri,- ► )

where

(3.39)

(3.40)

f
.r

:a

l

or	 1

(3.41)

if the edge = 1 or _ -1, respectively, is completely outside

the Mach forecone. Otherwise

—1 — KQ^O^XQ
P I1^11 . a, qs	 (3.42)

if the corner -f.= S, , - S, , is inside the Mach forecone, otherwise

Sy ( S,. S+ ) — Z 5' n ^( O Qr)C^O Qs ^( ^'q,z Q^ 	 (3.43)

where the term in brackets is evaluated as indicated by Eqs.

(3.34) to (3.38).
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SECTION 4

METHOD OF SOLUTION

4.1 Introduction

In the preceding Sections, the problem has been

formulated and the expressions for the source and doublet

integrals obtained. The method of solution is

outlined in this Section. This re quires a discussion

of the value of E on the surface Z and an analysis

of the role of the diaphragms. These are presented

in the following 6uosections. Then, the general

method of solution is presented. For simplicity, super-

sonic trailing edges are considered so that the contri-

bution of the wake need not be considered. For subsonic

leading edges the wake may be included by following the

same procedure used in Ref. 6.

4.2 Value of E on

Consider Eqs. (1.6) and (1.8). In order to evaluate

the value of E on the surface, 	 it is convenient to

obtain the limit value, as the control point, P., approaches

the surface, v of the body. Following the same proce-

dure used in Appendix C of Ref. 1, consider a small

neighborhood 'E of the point P, on the body (Fig. 7).

Equation (1.6) may be rewritten as

	

j- P
	

i H.m	
^I1Lo`ao _ _{	

d ^^ a
	 ^;3N`^il;:i^ 

^2. t 2nv^	 (4.1)

F-^^ ^	
III!

4L
a^
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^f

`	 where
r	 ^	 .

°	 2 n ^£ _ _ ,7T 
2	

_	
a	

''"	 d	 (4.2 )

	

\2N` i'J^^l	 vN` `!Igll

Assume that the surface E is a small quadrilateral element,

as shown in Fig. 8. If E is sufficiently small, the

surface may be replaced by a quadrilateral planar element..

Then, if Po approaches the point P. , the value of u • -r^ a^

tends to zero; and, neglecting higher order terms in
P
!	 (.+r.,i::h includes, in particular, the first integral in

Eq. 4.2) in analogy with the results of Appendix C of

Ref. 1^ one obtains ;s:e Eq. 3.29
i	 .

P, P P.— P*

	

_	 c

+ l̂a	 ^^ ^ L a, x 
v 3 — ^ :7u, o a , .^r..z _ i - r `

 

'C'4' : 2

	

f^ i	 :J x G7 , C7 a .^ n I	 ^ e ,^i

`	 where the upper sign hold if P is outside tt?.e surface ._

(region E = 1) and vice versa. Hence, for infinitessimal

values of	 combining Eqs. (4.1) and (4.3), yields, for

Pt on

r.
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where

t	 ^^.	 t .O 	f 	 !	 \ a 0 NT.1 1 r+^. ^w

	

D	 ! u	 (tom, ass+'Y %e ^^	
(4.5)

in both cages 'P, inside or outsi ?e ^) , in correspondence

with Eq. (C.13) of Ref. 1. Note that Eq. (4.4) may be

included as a particular case of Eq.(1.17)by extending
i;

tie definition of E as

l	
E = 1	 Outside

	

=1/2	 On s

	

= 0	 Inside
(4.6)

Finally, it may be noted that Eq. (4.4) is an inte-

gral expression relating the value of ?" at one point P

of the surface	 to the values of	 and v:^ ^^^.U c on

the surface	 The values of	 are unknown, while the

values of .'! .^1 r ^c are known from the boundary condition,

Eq.(1.21;. (except for terms of the same order of magni-

tude as the ones neglected in the process of linearizing

the differential equation for the supersonic potential

flow).

4.3 Numerical Procedure

As mentioned above only wings with a supersonic

trailing edge are considered here. In this case, the

wake does not affect the wing and, thus, it can be
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ignored.* Consider

edge. In this case

equation and can be

small quadrilateral

constant within the

tan at the centroid

first a wing with subsonic leading

Ea. (4.4) is the desired integral

solved as follows: divide	 into

elements, assume	 and

elements. Then, Eq. (4.4) (writ-

Ph' of the element	 yields

I	
.	 j Y"

'7
1,C	

j	 (4.7)

where

(4.8)

Pt P,

is given by the boundary conditions Eq. (1.21), while,

approximating the element with a quadrilateral hyper-

boloidal element, Chk and bhk are given by
r

(4.9)

(4.10)

with D and S given by Eqs. (3.38) and (2.117) respectively.

Next, consider a wing with s upersonic leading edge.

In this case, Eq. (4.7) should not be used since the system

may have a determinant equal to zero. In order to show

this, consider the case shotm in Fig. 9. For simplicity

assume that the elements are such that the Mach forecones,

The contribution of the wake may be included in the
same way used in Ref. 6 for subsonic flows.
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Ci , and C,,, with vertices in P, and P. respectively, intersect

only the elements % ^ , and ^ .^	 Assuming that the element

^ i is planar, then

Ckh = 
O	 (4.11)

since ;' • ^:t x ra z = J on s . Furthermore note that

according to Eq. (F.7) (or Eq. (F.13) with E = 1/2),

^-	 =	 * ^^^-! ^ ^(^=-^ (4.12)

On the other hand,

G'ih	 a	 l+_ 2

(4.13)

since all the elements except ` I and Z. are outside

the Mach forecone C l . Equations (4.11, 4.12 and 4.13) are

equivalent to

C, 6- -I	 l -2

	

: O	 h j 2
(4.14)

Similarly

(4.15)

Therefore the first two equations in Eq. (4.7) are

1	 L	 '	 a 

	

(4.16)
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which shows clearly that the determinant of the system

in Eq. (4.7) is equal to zero. Therefore in order to

solve the problem a different procedure is used..

Consider the Green theorem for the function E

as defined in Fig. 10. This yields a systems of

equations similar to Eq. 4.7 where the summation how-

ever is limited to the upper surface of the wing.

Similarly for points on the lower surface the summation

is limited to the elements on the lower side of the

wing.

For wings with subsonic leading edges the deter-

minant is close to zero if the edges are near sonic. In

this case as well as for wings with leading edgw-par-

. tially subsonic and partially supersonic, the solution

may be obtained by using a diaphragm to separate upper

and lower sides of the aircraft. For the elements on

the diaphragm, both	 and d' % yC are unknown,

while two different equations are obtained by writing

Eq. (4.7) for the upper and lower side, respectively.

The solution of the problem is obtained from the system

derived by writing Eq. (4.7) for the upper and lower

sides of the body and the diaphragm.

The method described in this section was used
.Y

,e	 to obtain the numerical results presented in Ref. 9.

w
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SECTION 5

r -	 CONCLUDING REMARKS

A general method for solving steady supersonic

flows around complex aircraft configurations has been

presented. The extension to oscillatory flows is

presented in Appendix E. Numerical results for steady

flows around wing body configurations and for oscilla-

tory flows around finite thickness wings are presented

in Ref. 9, and indicate that the method, besides being

intrinsically general and flexible is also accurate
and fast.

:i

a!

j
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(6)
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Fiq. 9. Geometry for determinant equal to zero

for supersonic leading edge wings.
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APPENDIX A

SUPERALGEBRA

A.1 Super-product

As mentioned in Section 1, in order to simplify the algebraic

manipulation for the supersonic flow theory, it is convenient to

introduce a special algebra, called supersonic vector algebra

or super-algebra. In addition to the rules of the ordinary

vector algebra, the super-algebra includes a supersonic dot

product or super-product

Q O b = ax b,r - aj by - at, b 	 (A. 1)

The additive and distributive rules are obviously valid for

the super-product. Note that So a is

Q O d	 O	 ^or	 "qx	 Qri* a t	 (A.2)

that is for a pointed, respectively, inside, on, outside the

Mach cone (Fig. 1). Hence, in addition to the ordinary norm

of a vector (or dot-norm)

a - Q • Q (A.3)

it is convenient to introduce the supersonic norm (or super-

norm)

N a n = fl a-0a I	
(A. 4)

Finally, it is convenient to introduce the concept of covector

< <	
ax	 (A.5)

' a3
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With these notations, it is immediately verified that

a o b= a`• b= a• b `	 (A.6)

It may be worth noting that

a ^R c	 a ^® b x G = a O!'b x C^` _	 :,` x C^ (A. 6a)

A.2 First Super-rule

Throughout the subsonic finite-element formulation (Ref. 6)

the following rule is used

(q x b). ('Ex j ) = (a• E)(b• CT) - (i. )(b •a)	 (A.7)

{ The corresponding supersonic rule, called for convenience,

first super-rule, is also valid

Offe40- (a0 a )(I Z^(a y b^ e (^xd) - (	 (A.$)

For

(u x b) o (F- x d)

-- ( ay bt - as by) (Cy is, - Cs dy)

—(as bX - ax bJ (Ca& Cm d.-)

-(ax by - at bx)(CtJY -Cydx)

ay 4cyd{ t a ,b,CxJ,-Q,VbaC;dy- Q{blC,d

a: b,^c,ax -a X b^cr^^*a^ bxax de{ ax bi. C;ax

- A t by Cx d y - a, bx C, dx t ax by C, At + ay bR C ti d y	 (A. 9)
M _.

t --
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while

( Q a 0 F o V- (iiG W;o E)

_ (ax cx - a, c, - a. G;)( bx d„ - b, d, - b, d:)

Ax ax - a, dy - a,,	 c  - by G, - be C,:^

Q, cx 6,,^ - br dr _ bt d;

- ar Cr ( bx dx - b y - b ; d t)

a; c.	 by dy _ b tl

- a.% d x (b Cx - by Cy - ba, ct)

t Qrdy (bxcx- bCr-b^C^^

* al it (bx c x- br Cr - b ^ ll)7
-= Qy bit cr di + a., by c; dy- a, br c:dy- at, br cr 8t

-a, bx c; d, - aRbacs dt * ao bx cxd* f a x be. c;dg

- Q,A by Cy dy - ay b.cy d  f Qx by c,, dx - ay b,, c,#dy (A. 10)
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A.3 Second Super-rule

A second rule of the super-algebz-a is

)j

Q c (b: C) G (Sx Q) +

a o b (r " a)o (Fit a)

(A. 11)

Note that the dot product appears in the triple product. In

order to prove Eq. (A.11), consider the regular vector algebra

rule	 _
Q r (;,t zj = DT (W. 0— C

_ 
u-- b)

(A. 12)

This yields, for the covector 	 (see Eq. A.6)

b ( ae ^^- c CQ^b)

On the other hand, according to Eqs. (A.6) and (A.8)

a C = (JJ Z) G a`Y (i s "c)

Q C o a'- ( Fit c)a Mt0- ('P0 (; A E)j

/i
while, according to Eqs. (A.6) and (A.8)

(A. 13)

( b( Q o 0- G (T as)] O ( ; (a O C )- C (a 05))

= 'WO E ( g o z)'-Z bO a"oc aob + Z * E (Qob)&

a OC (pxC a b X A r Q C 0 (Cx bO G, A)

(A.14)
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Combining Eqs.(A.12), (A.13) and (A.14) yields

a 0 a (; x G)O (YX F) - ( a •;), G)`

( a` x (bxz)) o ( a'L x ( b x c)J

(T (aoc)_ c (aob)]o(T( aoc") - ( 50*b )J

a oc ( zc;o^bxa^^ a ob (c x 5)0^E x a)

(A.15)

that is the second super-rule, Eq. (A.11). In particular,

for a = q, b = a l , c a2 , one obtains

^O Qs Q,x(1?O Q,x^^ oQ^ tQ3=Q, O Q,=	
(A. 16)

A.4 Third Supersonic Pule

A third useful formula, called the third supersonic rule,

is	
G^ dobx C 

Q ^ { '` ^ +R x • O; x C a•jrd
+ a x	 C a zd••('	 O	 (A. 17)

The proof of this rule follows

ax$o-Tx

= (a 0; coa - a 0 z 602) a ' -  -

r

i

f

Y'

^a

k

gy
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t aobE v f - QQE bo y') _ (a =f o Ex	 a^9

In particular, for a = b = q, c = f = a 2 , d = p3 , g - al,

the third superrule reduces to

4 X P3 0 Dr 's î, C (T • ai ^ Q1)	 ^ X Q' ^ 0' r Qs) ! ^  Qs r ^3)

l	 Q^ °

ORIGINAL PAGE IS

UP PUUR QUALITY

(A,18)

(A.19)

r
l
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APPENDIX B

BASIC INTEGRALS

B.1 Integral Il

As mentioned in Section 2, in order to obtain Eq. (2.24)

from Eq. (2.22) is necessary to evaluate the two integrals

1	 d 7	 (B.1)

_ d	 (B.2)

The integral 1 2 is evaluated in the next subsection.

In order to obtain the integral in Eq. (B.1), it is

convenient to .reat independently the three cases a 2 O a2 0.

Consider first, a 2 a a2 > 0. Note that

G ^i1 ^ ^ azo lij t ^. o Q1

1	 ^oQs-- 
o

^ Q
lo d, 

t ^ o 
aj ^ 

Qio u, ,- Ds o Q,

(B. 3)

Note also that

0	 (B. 4'

Hence

a	 n	 Q,oa, r o 4, _	 NQ̂,OZ	 B(. s )
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Note that

	

r b «	 ^ O ^ Q.G Qa ;- ^ O as

	

_	 ^	 M ^. x as it

;- Oak	 II x 'k 11

P	 '_

En

f_

R	 ;,

4	 gioq, - ^oaj=-2n

r

	

	 ORIGINAL PAGE IS
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(B. 6)

r
Hence, it is possible to write

b	 .^

	

y_
	 I, - s,^n( .oQj)	 °g a=° A= + ^ ^ ° Q^^	 (a= oa,> (B.7)

d ^x as ^

Note that

- 0u
	 WX-7^ I

(B.8)  

	

,^	 Court X ^ x-n ^ X + .'t ^ - 1	 , X L J 

k

v

f

u!'
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Hence

Lin Uok,)
N^x Q1 ^

^n  ̂ go Ô-jy^ + °al l1 ^^

^_ I^oQ31

and

Q.n	
og Ql o a, f gog 4,o a",_fx j2 O 4

Il ^ x a, !!

n_	 o f Q, o a,	 +	 v a, o a, '
x,+7	 --

a,r► 	 rigXa^ 1

= 5',•,^ k • (—rVo

ix

 a, o 
Q Q̂  h _
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Next, consider the case a 2 O a2 = 0. In this case

	

=( (P-	 ^ ^ t Ps • P;^^ = 0	 B9(.	 )
Hence

2	 ^o^	 1	 boa,	 1

Thus

I , -`-s 	(B. 11)
e Q1

Finally, consider the case a 2 p a2 < 0. Note that in this case

	

a 5- - ► ^ 0 Q,	 ^	 Q,o a,

l	 ^ ^ 1^ Q, ^I	 ^ ^	 Q ^i	 1 'f ^ x Q3 II

/	 JJ^zajll

_	 II^x Q, ► I 	 I	 -

_	 Qi O Qj	 - Ql O Q,

(B. 12;

Fence

I= -	 S;n` ^oo,
co 	 (B. 1.,
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a:

y

^l

r	 .

f

.a

P

^r

t

In summary

I	 Sie l_,. ̂ j_) an M t it n a' I * I	 Q, I

lla,Q	 N1 a, II

— S ( o A,) Cos,
-1 	 J o Q,,

Q a, a	 11	 if i 3 I

it a, it	 a k 
X a, II
	 Q,o Q,, >O

(B. 14)

^, O Q s
	 a, o Q,	 o	

(B. 15)

I = —	
^oQ	

Q,
0 	 B.16

^	 II Q 1 11	 II^X Q,^

ORIGINAL PAGE IS
OF POUR (QUALITY

B.2 Integral I2

Next consider Eq. (B.2). Setting 

(B.17)

one obtains for u • u = 1

O U	 q ;	 %,	 (B.18)

O ^-	 al r s e2 * 0 s.
	

(B.19)
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',	 $.^ U O 
b'z 

U	 O	 NON- (^@FA

c t ^^7 t 112^y	

J	
(B. 20)

with

a = Q, o u

b = p, o u

d

= Q, O Qa

U = j. ax

C - o4 — A i n Q, o Q, - (Q 0 C4 ) ' = Q, x G4 O Qo x U

d =	 - ab	 Q,oQs _ Q,ou a,ou ^ Q,• u o a1Xu

- ^ 1 * Ql0 Q:- ^Qj OU^ l = Qi x a 0 1 U

Combining Eqs. (B.2), (B.18), (B.19) and (B.20) (see Eq. A.1

of Ref. 6)

I^ s	 a tb^	 ^	 d

Za
;e-- c 

d n	 /—e

(B. 22)

Note that

(4e -6d)2 , Cad -bc-)

= 4 (e) . d) - b (d^ + r-)



E * E
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w

f	 ,

^.	 = A j (r_	 ab)J - b ((^- a b) 	 a

F.

= a,o u' bo a,, -Qi O^ g-oa,

C - Y	 Q, X Q, s- 1^ V 0 ^.7l Q1

Furthermore,	 f/

d G d s a	 0 y (C4 x Qj> `(^(Y Qs,'r .O Qj 	 Y U O N r Qj

For	
•r^rU(^xQjOQjXIA,

(B.23)

(B. 24)

^	 ` 1

	

C  -d = (Q2 x 1410	 )(QoXuo Q,xu)_ (Q,xu0A.it

j(aa oaj)(Ci	 (a.0u)+)((!,0a,)(u0u)- (Q, 0 C+ 1]

_
	 17A) 

_	 j2

a (Q OQ,^tQ. raj,-Qs 0Qj ^Q,O{^,•^aOQ.(ba,0 ^)'. 	 a)(k106

- (a,0 Qj '.- 2 Q. 0 k Q,0 U Q,Ou - (Q,o N^Qj0N)s

(B. 25)

	

while 11 	 Q	 -b 0 ;- (UK Q / 0 (U x i4) '^' P 0 Qy 0. x 31j O lU x Z

I
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3

A 	

1 r? 	 = tU•	 (4.r^ Qa1 J L N '` Qs O N x Qs^

* (Q' + ai^ Q2	 \Q. '' 7 ai)z U O(UxQy J

t (^ a, * ^ a^) ^ u ^ C ^ ao * ^ a^) x a= ^ ray ^ u)1

(Q,00^t^7 a.oQ,^^ ^^ (u^Q,o N x ayl
f, (a ®Q,s ^' ^ Gj O Qy) (Q o x N O U * Q s,

Qs + 	 ayifN UY Qs/

t	 QOU+^ Q,	 Q.^ QyO Q1ttA,

.^ (Q^oW+^Q2 vu) J(Q3xQ10Q,if

11^

. 	 t 4^ mQ^ (Q,o N UoQ,- Q,oQ1 NoN^

t Qo 0U Q, 0Qj Ay o(A —Q, OU Q^ ^Qs^

t	 Qo 0 Q^ ii1 0 U Aj O Qy — LA O Q=

t al es= ^Q• OU N

Qj O U r Qo 4 Qj Q2 O u _ 4, LA Qj 
0 hJ3

U• 0 if 4k 0 4", - a. 0 Q• { u 0 dj	 nj 0 Q^ (^, 0 u N 0 Q^

..	 •• rQa O Q^,s .. Q 3 O Q. Ca, O U^1

(B. 26)

ORIGINTAL PAGE IS
„	 OF PUUR QUALITY
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on the other hand, applying the second super-rule, Eq. (A.11)

(with a=q, b=u, c=a2)

(B. 27 )
O N ^	 jr41  U V Lilx^^

Thus, comparing Eqs. (B.24) and (B.27)

_ _ s

CC — ^^ = (^' N^ as^	 (B.28)

Hence, finally combining Eqs. (B.22), (B.23) and (B.28)

`	 j ^	 ^_	 tangy _"^•uo^.xas	
(B.29)

a
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APPENDIX C

TWO USEFUL FORMULAE

N q d
C.1 An expression for . 9 G.

In this Appendix, it is proved that
Z	 ^

^ ^ ^! 11 a ' '` aj 1)	 - ^ • Q. ^ k,1	 (C.1)

Note that

- ?r 	(7_ 7^ as	 (C.2)

and 

pit 

T
*	 N	 (C.3)

Hence

or, according to Eqs.( 2.20 	 and (2.31)

^xQ1 0 iA r Q2	 aN O Qs . N

^*	 ^	
X Q i u
	 - - X x + a2

-nN	 sd	 1)N	 ^4

41 X Q1^J	 t (p it aj 0 i' s jd A,

'^' ^^ s Qt ® Qsx Qt/ â (C. 5)

Hence

#47

.1 f QE g+ ^*d 0 if

pp

	

♦ //
	 a	 ^

«. g^ /laixa,u +t^RQy o QixQ:) 4^ t ai +^=Ql®Q3xQl^^^°Qit
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t i	 a x ai I	 C Q
= o	 m Q,

+a	 QrO Qis Qr> ^6 Qi

1/
+ ( ^x Qj 0 Q,x Q yf k tx ' OQt t Q if mat 	 (C.6)

On the other hand, according to the second super-rule

-- ^- 4 Q r ^ 
0' Y Qi O Q ' x as!

a, l	 x Q, m Q1 x C^r^
	

(C. 7)

Hence

Jlarx as ^l 2 j^^^@	 N2 + ^^•a, xa2)' ^

^. v ^. ^^ Q, x Qj ^) .r ^. J, Qs v q, y q= / Q, ® Q1 .. (^ ,r Q, O 4y x Q,^ Qs O Gy

__	 t	 I^a ► x aj^^ (^.xQy ®Q, y Qj ^ ^4 Qi -^(^j,cQ, OQj' Q,) ^rO4s

t Z(txasm^^xa^^^^.aa,oa,xQ,^

+ jI A,t llyll	 ^O	
(4,XQy 0 a,XQy)-oQ, (^OQ,xQy^

lot

.^	 ^^ `X I	 ANAL a
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ly

t
E
F	 '
1
h

s

4	 ,

t

1	 2

r; R Q1 'sQ,xQy, Q, p Q, + C^ x Q,QQl XQ,, dj0Qy

a

t Jf p,, ai u (^^ ag o 	 Po a, ,(^ a, o a^x Q► ^ $oQj

+ Z ( IrX Qj O Q f X Vtj )( ^' x Ql QiX Q^ Ni Q.t

^. x Q^ o a, x Qi ^. x Q ,̂ O Q^ " Q1 Q, O Q,, t g.x Q, m G,, ^Q, Q, v Q,,

q	 r ^
^' ^ Q, x Q, ^ g- ° Q,	 '^' 0' ^ Q ^ 0 Qy x Q r t ^' ^t Q, 0 4j ^ q, (.^_ • p^

+ Qj O Q, A 4Z Q, O 4 j + ^^ Q^ A Q2 d ^. O Qs

ux 0

(C. 8)

since*

v Q1 Q^xQKf? ^!X(,^K ^ ^x Qkm Qxa QK Qj^a^

+	 x or O QKr 
if 

Q R O QK

Por

01 A Q K o al l Qx = ^+ o Q^ ^ A^ m Q^ aK O QK ^ rQ^ ^ a
"
)^ J
ic.10)

v Qt

For ordinary algebra, this corresponds to the well known re-

lation between tensor components 	 r Q,^A,k zr



z
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and

^. x QK O Q^  Qx A^ Q Q! + ^. x Apo a lf	 Q^ o Qx

^p Qt QK a QK ap a a, - i eAlf  QK o Al a t e 41

t o 4,C at o at o f a A K - jo  Q1 (a l e aK)1

s
c. ^ p Q^ ^ Qx O QK Ql ^ Q^ - ^a^ ^ QK^

Equation (C.8) is the desired proof of Et. (C.l).

(C. 11)

(C.13)

(C.14)

C.2 A Second Useful Formula

In subsonic theory, it was shown that

	

r	 Z^ 

	

^• `	 x Q" t	 x ^x jj	 ^XQf' j raj l

Here it is shown that for supersonic

4 • Q, x Q=1 ^+ ^ x O l e p 4.4) = 11 Ix Q, 11 11 q x'111 .

1	 I^
_a

r
^E

^x

For, according to the second super-rule (see also Eq. B.27)

^ e i ( f•Q,xQ1) t ( ^xi j G i x a, )'

_	 ^ 0 f l f e ^ Q^ x Qa Q^ x Q^— O Q1 ^A 1 s Q s O Q^ t ^^

^- ^ O 4 ^ r Qs x Q^ O Q^ r ^^ .^. ^ g. O ^. Q ^ A Qx — ^ ® a 1 ^. • Qs

( t o t) (41 0 1 ke Q,- oQ j eaO ,^.QD^, ^.OAj rQ^ p Q^ Q1 0^

y R

V `
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t ^ ^ ®^. ^ { ^, o Q, , ^ — 2 9 0 ^, Q  o Wi g o a^ $. Q Q^ + ^^, 0 lc^ ^, ^ qi)

( ^ e ^ 4, v i, - ( ^ u,)'] j f o 
t 

4,0 4, - C ^ o a,)' ]

= (fix Q, o j x Q, = (fx a, o ^r 4,)lj xaj° &"ai

Of f A l 11 

s 

11 D" it 

as jf 

'a'

	

(C. 15)
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APPENDIX D

DERIVATIVES OF ID AND IS3

D.1 Introduction

In this Appendix, it will be shown that for any hyper-

boloidal quadrilateral element, the second mixed derivative

of

I	 =	 ^''n
- xQ^a ^Xa2

4at
( D.1)

is given by

ay1p	 ^' ' Q x Q,

'of	 (D•2)

while, for any planar quadrilateral element, the second mixed

derivative of 43

js; _ (g.•n 
la 1 - 	 = ^•n nP(,! - - j	 (D. 3)I^•Q, ;o,

is given by

oil

Note that

8 A,	 D 
Qi	

o
	 (D. 5)

a 41	 - ^` 
4,	

(D. 6)
0'7	

a -1	
- P3

and

q (D. 7)

.+L (D. 8)
^^	 J.
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'f	 D.2 Derivative of ID
k ..n

f

F
Consider Eq. (D.1), or

	

t a.	

T
t'

t.
a ^

where

The derivative of IJ w::th respect to is given by

aIo = ^ S 
^, _ ^ XQ, o 

^XQ1
a ^J	 7	 S., l • a,, Q=^

r

(D. 9)

(D. 10)

1	
9

5,	 -	 -	 X
2

* ^ ^•Q^tQj

r	 Qj x Q f	 r Qi +	 jr 
	 O 1` Qj t ^" Qj Qj X -

{'	 ^^^	 Qt's Q.z

^w

	

31- -	 -
7 T̂

IT
i

` aW

•r

i

Js



^I

f`

E

^f

to

^i

^.i

t

y

1i

i f

w

y
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_	 _ _ ,

O^^ ^ ^•Q, ^ Ql! * ^Q xQ,p ^ r

(Q,,XQ, ^ ^" Q,, + ^ x P^^ ^' as, ^G ^ ^-' Q' r as

^xQ,^ ^ xQ̂ ^ asO ^ ^• Q,i Qs + ^O ^.	 r̂ 'I3 X Qs/

!^ O' ^ d.• Q^ zQs^+ t^ X Q+ O ^ r QjJ'" ^- Q.

(N
's 0	 0	 X O^a

'+' C^ ^-= P3 O ^ z Qs^ ^' Q ► r Qs ^^ x t7s O d' x Qs1 ^ • J3f Qs,^O 0'

(D.11)

Next note, as shown in Appendix C, Eq. (C.14),

}

s

^' ^C' •a, ^ a,^ ^	 0 ^ xQj^ ^ 11 ^xQ̂ ^i Il^rasi ► (D. 12)
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Moreover, note that ( see Eq. A.19)

C 4z	 A' o - x Qy^ ^^ ^-	 ` ^ xal O Ly â ^ ko ^•Q'tas

-1. 	0 1 ^j e -7,)	 a aj) (i - ^j jezo

.= ^aio Yaavj - Q4^Q^ ao) ^.o

1 " pr 0 j Z3 0 - C LO Qj/,, ( h. O - ) l j • fi(^ —.0 Qj/

^g Y Q} O g x Qj ^ ^^ . a, ^;	 0

(D.13)

since

^^ Qs ^ Qs ^^ O Qs,j= ^^Qj O ^,x Qi	 ^^ z (li f^	 (D.14)

Finally, combining Eqs. (D.11), (D.12) and (D.13), yields

D7 Opal r0pi7 #-I];11

(	 (	 - - Y a
^-i-xQit s liail (foa, -̂.a,xa`-k
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Next, consider the second mixed derivative, noting that

a (^x a'^ =	 1 ^^. + 7^j^ x ^P, ♦ 7^3^/ = o	 (D.16)

one obtains

a^	 N ^^ Q,11' a 
4 -0i

+z oQ Q	 -

	

_._	

q	

^ ' ^ •QIZ 3̂ t jo y Qr. Qrf ^; _ a,o Q, ^•QIX^,

tot

	

^^ Y q, p q^ll	 Jr

.q,xaj 	 (D. 17)

	

!	
p	

11}

r

.r
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D.3 Derivative of Is3

Note that fora quadrilateral planar element 4.E is

constant. For

a^

	

^ •n ^ = Q, • n .o	 (D.18)

	

a ( ^•n^ = A, n = o	 (D.19)
a^

Therefore, using Eqs. (D.1) and (D.17)

	

a'IS	-'	 -^" q, o r 4j

	

a^^7	 ^7 f 	 Va, x Q,

 IIvi -VI 07 	 n	 p !^

(D.20)

in agreement with Eq. (DA).
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e

!k 	 ^S
C u

C	 ^ i

,E

j F

fK,
6	 ^'

F

f

6

E.1 Integral Equation

In this Appendix it

in the main body of this

sonic oscillatory flow.

B^

and the complex potentia

APPENDIX E

is shown how the results obtained

report can be extended to super-

Introducing the variables

n
1 such that

SUPERSONIC OSCILLATORY FLOW

^.a(T- M X^
/ z )	

(E.2)

the integral equation for the subsonic oscillatory flow is

given by

n	 ppr
	 ^?1)^ l+!a 11	 TJJ

z
 12N	 'r ,!	 r

(E.3)

where Z surrounds body and wake,

C.2 Boundary Condition

The boundary condition is given by

"y'	 I xd^ !	 ,t	 (E.4)
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or

- xyl	 Uxvz	 M J 7- B aX t 13^' ^X 3X
(E. 5)

where ^ and tt are such that

_ U x t ^P	 v .e t,^ x +

(E.6)

NexE assume that the motion of the surface consists of small

harmonic oscillations around a rest configuration, that is
N	 fJ4 7

(E.7)

Then, setting

+(X/^ `fi e° 	 (E.8)

one obtains
^'
	

-.j
	 ^)	

,A

w
^^,^

,v	
v

5 J 
^XYZ

ZJIL T
e	 4

N	 iJ2 T
12	 e

M

JLT

x

pi Z
^^	 ,j^

N

a
1 s,

r	 a „	 /^J(,T

F
+

8~

J, 	 `
^
f
/
'e t

` u/^	 Q X 0X	 f^X
^y'

v /^	 /^

N Gi2nr^,!	 o-x
(E. 9)

ORIGINAL PAGE $

OF POOR QUALITY
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Assume that the surface is given in the form

- + TZ- Z,^^X,^j - Z^, (Upper surface)

r^r
Q lX, ^1 _ ^ lX, ^^ 

e ;RT J_ 
J	 (Lower surface)L	 ! (E.10)

with

or, in general by Eq. (E.7) with

â —	 •^- — µ ; X , ^' = Q i^	 (E.13)
L 	 .

a 

^x t Jx
^►^, ^ ^ ^ 1	 (E.15 )

and

X	 (E.17)

P;,	 I,4
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Assume also

^j: 0(1)	 (E.18)

This implies (see Eqs. E.25 and E.26) that

^o = 0 !` 1	 (E. 19)

N	 ^ti

=	 (c	 (E.20)
i2A T

Neglecting the terms which contain z 	 (which are of order

F t ) and separating the steady from the oscillatory terms, one

obtains

_
,S O 17	

3,	 M L 5̂ . `	 O
rill' 0	 xyz	 ;x	

rj GK 
GX

ow	
(E.21)

.,	 ^	 r	 I as

n.^	 H

M^ ^^
t3^' a x e x GX x

Introducing such that

n rj
(^	 cu e

(E.23)

Equation (E.22) reduces to

^,r= o	 x^2	 ^ X
Ai

r r1	 ^+^1

* :iC Tx-	 (E.24)
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Finally, neglecting terms of order £ z in Eq. (E.21) and terms

of order r: 3 in Eq. (E.24), one obtains

t7y 4 ,5 j V/ t; = - ' a'^„
.3 x

(E.25)
;^2 MX

	

I	 (E.25)

In particular, for

^	 r

^	 kI `	

, O	
a (	

, v'	

Jr

(E.27)

(where the upperjlower] sign holds on the upperjlower] surface),

one obtains

N

t

I	
= /_

I'	
z	 (E.30)

and

X^ z	 XTZ	 A17 s J1" ? ,^	 ^'

(E.31)-

where
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C.3 Pressure Coefficient

The pressure coefficient can be evaluated by using the

linearized Bernoulli theorem, as

c^, _ z	 + v
1 ^vC

B	
1

For oscillatory flow, setting 

T'- /IX)

c	 (E.34)

(E. 35)

one obtains

ti//

b X 7

4 XM	 "j7 /V

2 ^ i J^ cG -F- =
I O

_` I	 ^ 1	 _	 Lr

v ^(

?	 !^

jR !I 
P1 AIJ 

PAG	 ,i^	
XJl,, 	

^	 E
U'^ 

QUAI ITy
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APPENDIX F.

SUPER-SOLID ANGLE

In this Appendix the concept of supersonic solid angle

or super-solid-angle, ^^^^ , is introduced and it is shown that

^I =	 d-ar

TM

f Z/7	 \ ^e	 ^" 4-/

(F.l)

^- Note that (see, for instance, Ref. 1, Eq. 6.6) 

^1	 ^riJ C	 ;:a .^	 ,!^ 	 ^.. 
tI d

Oil J

li3

}.^ ^	 !3	 r.	 J
_	 I N ^ A 	 G^'^^	

_ '	 ^ l^ l	 d^z

r

(F.2)

where the finite parts of the integrals are understood,,-.12

w. is the usua l solid angle, while

q /3
f1

(F.3)
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is the analogous one for the supersonic flow and is called here

supersonic solid angle or super-solid -angle. Note that

,'Y	 l o -,/
l! f 	(F.4)

r
depends upon the direction of .i but not upon its magnitude.

Therefore if P is outside the closed surface f, then (following

the same reasoning used for the usual solid angles)

	

d.Sl = O	 ^^; o wr s CC	 (F.5)

Furthermore note if Po approaches P. on 2. one obtains,

according to Eq . ( 4.3) and (F . 5)

	

1̂  dJ2' ^ 	 dSL' — 2
^^ 

^ ^i

	

alts 1	 _ 2 n ,. O

	

c	 Z	 Ipe_ F 
Therefore

	

0
d 52'	 2 y	 p

	

1	 o Q-n	
(F. 7)

Similarly, w if P is inside Z^ the super-solid-angle is the

one intersected by the Mach forecone on an arbitrary surface,

for instance the plane X - n'y =-^^-	 T- -^ . r^ ^ .
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j	 ;,,d.
	 tl (!	 ,aNa J .r^ ^!!

r	 a

d4 (2-71 ' P
V	 ^	 0

	

N	 C^

X11	 r 
Va t -^ 2 / f 	_	 ;^^7a1 -

Ja L

^ 4	(F.8)

Equations (F.5, F.6 and F.8) are equivalent to Eq.(F.l).

It may be noted that according to Egs.(4.6jand(F.lj

E	 _ !-	 dsZ'	 (F.9)

It should be noted that Eq. IF. A and 1;/,4. 6) are valid only if

the surface, 7 , has a unique tangent plane on P ,, ,

while Eet. (F.9) is valid even without this restriction. The

proof of this statement is not of interest here, but could

be obtained by following the procedure used to derive

Eq. (4.6) by using Eq.(F.5 in order to evaluate d: inY

Eq. (4.3).

It is worth noting that the analogous of Eq. (F.9) for

subsonic flow is

(F.10)

The proof of this equation is similar to Eq.(F.91and is

not given here. As for Eq. (F.9), Eq. (F.10) is valid

even if 2 does not have a unique tangent plane in P*

Equation (F.9) implies that

G ^GV	 C	 ..mac- ---	 {= j^^	 F.11

-' 'R"11 T, PAGE IS
^^' I'UUR QUALITY
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that is the sum of the coefficients of Eq. (4.7), where

E = 1/2, is always equal to two. Note that this result

is valid even if the surface does not have a unique tangent

plane in P",,. = P,, since in this case Eq. (4.7) must be

modified as

S
A.	 ^^, +^ J L	 ` I ^a, j	 ^k	 (F.12)

Equation F.11 may be used to evaluate E for

points with slopes discontinuities (such as corners

of quadrilateral elements or the apex of a cone) as

G C,	 + 2	 (F.13)

The above results are valid for subsonic flow as well.



X

Fig. ^.l. Super-solid - angle


